A maximum principle for Hermitian (and other) metrics
نویسندگان
چکیده
منابع مشابه
Affine Hermitian-einstein Metrics
Here c1(E, h) is the first Chern form of E with respect to a Hermitian metric h. The famous theorem of Donaldson [7, 8] (for algebraic manifolds only) and Uhlenbeck-Yau [24, 25] says that an irreducible vector bundle E → N is ω-stable if and only if it admits a HermitianEinstein metric (i.e. a metric whose curvature, when the 2-form part is contracted with the metric on N , is a constant times ...
متن کاملA Maximum Principle for Combinatorial Yamabe Flow
In his proof of Andreev’s theorem, Thurston in [1] introduced a conformal geometric structure on two dimensional simplicial complexes which is an analogue of a Riemannian metric. He then used a version of curvature to prove the existence of circle-packings (see also Marden-Rodin [2] for more exposition). Techniques very similar to elliptic partial differential equation techniques were used by Y...
متن کاملA Maximum Principle for Beltrami Color Flow
We study, in this work, the maximum principle for the Beltrami color flow and the stability of the flow’s numerical approximation by finite difference schemes. We discuss, in the continuous case, the theoretical properties of this system and prove the maximum principle in the strong and the weak formulations. In the discrete case, all the second order explicit schemes, that are currently used, ...
متن کاملpassivity in waiting for godot and endgame: a psychoanalytic reading
this study intends to investigate samuel beckett’s waiting for godot and endgame under the lacanian psychoanalysis. it begins by explaining the most important concepts of lacanian psychoanalysis. the beckettian characters are studied regarding their state of unconscious, and not the state of consciousness as is common in most beckett studies. according to lacan, language plays the sole role in ...
Gradient Maximum Principle for Minima
We state a maximum principle for the gradient of the minima of integral functionals I (u)G Ω [ f (∇u)Cg(u)] dx, on ūCW 1,1 0 (Ω ), just assuming that I is strictly convex. We do not require that f, g be smooth, nor that they satisfy growth conditions. As an application, we prove a Lipschitz regularity result for constrained minima.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2015
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2015-12472-0